

Features & Benefits

- 333 W SOSA Aligned ANSI/VITA 62.0 Compliant
- Wide Operating Temperature Range: -55 °C to 85 °C
- High Efficiency, High Power Density
- EMI Filters Included
- Up to 300 W Power on Isolated 12 V Primary Output
- Up to 33 W Power on Isolated 3.3 V Auxiliary Output
- Fixed Switching Frequency
- Droop Current Sharing & Internal ORing Diode
- Multiple Units in A Redundant or Parallel System
- IPMI 46.11 Communication
- Input Under Voltage Protection
- Input/Output Over Voltage Protection
- Short Circuit Protection
- Over Temperature Protection
- Compliant with Initial Engagement Surge from MIL-STD-1275E @333 W Output Power (Down to 10.5VDC Vin)

Compliance

Module is compliant with:

- MIL-STD-461G (CE102, CS101, CS114, CS115, CS116)
- MIL-STD-810G
- MIL-STD-1275E (All Tests)
- MIL-STD-704(A-F)*(Note 1) (All Tests)

Module is designed to meet: *(Note 2)

- CE marked
- RoHS compliant
- REACH compliant
- Def Stan 61-005
- Def Stan 00-035
- Def Stan 59-411
- Def Stan 59-114

Typical Applications

- Military/Defense Power Supplies
- Armored Vehicles
- Land Platforms
- Aerospace Platforms, Communications, and Radar Systems

Product Ratings							
V _{IN}	16 - 40 V						
V _{OUT} (Primary)	12 V						
I _{OUT} (Primary)	25 A						
V _{OUT} (Auxiliary)	3.3 V						
I _{OUT} (Auxiliary)	10 A						
P _{OUT} (Total)	333 W						

Product Description

This configurable power board is designed to meet the unique and challenging environmental requirements of defense applications. This VPX Board with 3U form factor delivers up to 300W power with high efficiency.

Hi-Rel VPX power supply can operate without failure under extremely harsh conditions, which is crucial for military applications.

Size: $168 \times 100 \times 25.4 \text{ mm}$

Weight: 650±20g

Note 1: Due to the absence of a hold-up capacitor in the product, it is expected that the output power will be interrupted during power interruption tests.

Note 2: Production units will be compliant with the standards outlined in this section. Testing will be completed once the detailed specifications are clarified by the end customer. Engineering prototypes do not comply.

Page 1 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Electrical Characteristics

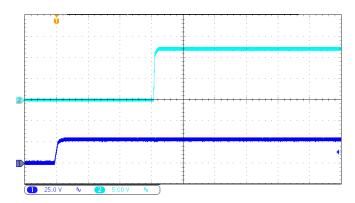
All data are obtained at nominal line and full load unless otherwise specified. (Ta = 25 °C)

Input Characteristics											
Parameters	Notes & Conditions	Min	Тур	Max	Unit						
Non-Operating Input Voltage Range	Continuous	-1		50	V						
Operating Input Voltage Range		16	28	40	V						
Input Under Voltage Turn-On Threshold		10.2	10.6	11	V						
Input Under Voltage Turn-Off Threshold		10.3	10.5	10.7	V						
No-Load Input Current			0.6	1	A						
Disabled Input Current			0.2	0.6	A						
Maximum Input Current			42		Α						

Main Output: +12V										
Parameters	Notes & Conditions	Min	Тур	Max	Unit					
Output Voltage		11.7	12	12.3	V					
Output Voltage Line Regulation			± 0.1		%					
Output Voltage Load Regulation			± 5		%					
Output Voltage Ripple and Noise (pk-to-pk)	20 MHz bandwidth		35		mV					
Operating Output Current Range		0		25	A					
Output Current Limit		27.5			A					
Output Current Shutdown Limit			27.5		A					
Output DC Current-Limit Shutdown Voltage			6		V					
Output Power			300		W					
Output Over-Voltage Protection	At nominal output voltage		14.4		V					
Maximum Output Capacitance	At nominal output voltage			2.35	mF					
Input Voltage Transient Response	50V/ms; See									
Step Change	18V to 36V to 18V input voltage		2.5		V					
Settling Time	Within 1% of output voltage		10		ms					
Load Current Transient Response	1A/μs; See									
Step Change	50% to 75% to 50% output load		0.2		V					
Settling Time	Within 1% of output voltage		2		ms					
Turn-On Transient Time	Within 90% of output voltage		120		ms					
Soft Start Time	Within 90% of output voltage		5		ms					

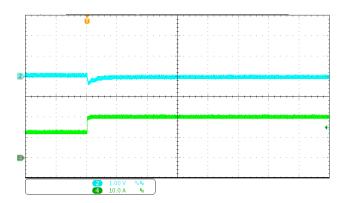
Page 2 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

	Aux Output: +3.3V										
Parameters	Notes & Conditions	Min	Тур	Max	Unit						
Output Voltage		3.2	3.3	3.5	V						
Output Voltage Line Regulation			± 0.2		%						
Output Voltage Load Regulation			± 1		%						
Output Voltage Ripple and Noise (pk-to-pk)	20 MHz bandwidth		20		mV						
Operating Output Current Range		0		10	A						
Output Current Limit		15			A						
Output Current Shutdown Limit			16		A						
Output Power			33		W						
Maximum Output Capacitance	At nominal output voltage			2.35	mF						
Input Voltage Transient Response	50V/ms; See										
Step Change	18V to 36V to 18V input voltage		20		mV						
Settling Time	Within 1% of output voltage		1		ms						
Load Current Transient Response	1A/μs; See										
Step Change	50% to 75% to 50% output load		100		mV						
Settling Time	Within 1% of output voltage		40		μs						
Turn-On Transient Time	Within 90% of output voltage		120		ms						
Soft Start Time	Within 90% of output voltage		5		ms						


General Characteristics										
Parameters Notes & Conditions Min Typ Max Unit										
Efficiency	Nominal line, 50% aggregate loads		84		%					
Efficiency	Nominal line, 100% aggregate loads		88		%					

Environmental Characteristics

Environmental Characteristics									
Parameters	Standard	Min	Тур	Max	Unit				
Operational Temperature (@wedgelock, card edge)	MIL-STD-810G_CHG-1 Method 501.6/502.6 Procedure II	-55	-	+85	°C				
Storage Temperature	MIL-STD-810G_CHG-1 Method 501.6/502.6 Procedure I	-65	-	+125	°C				


Page 3 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

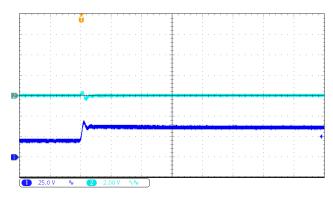

Main output voltage (navy blue) (5 V/div) Input voltage (blue) (25 V/div) Time base: 40 ms/div

Figure A. Startup waveform of main output at full load

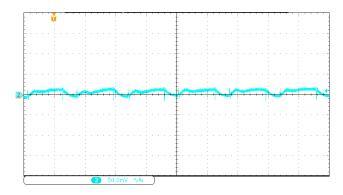

Main output voltage (blue) (1 V/div) Output current (green) (10 A/div) Time base: 2 ms/div

Figure B. Main output load current transient response: from 50% to 75% (di/dt = $1A/\mu s$)

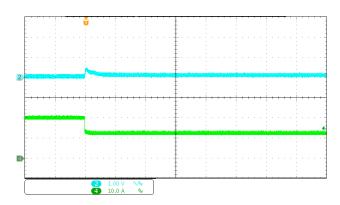

Main output voltage (blue) (2 V/div) Input voltage (navy blue) (25 V/div) Time base: 4 ms/div

Figure C. Input voltage transient response, main output voltage (AC coupled): input voltage from 18V to 36V (dV/dt = 50V/ms)

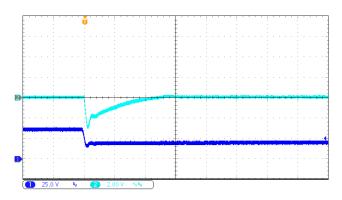
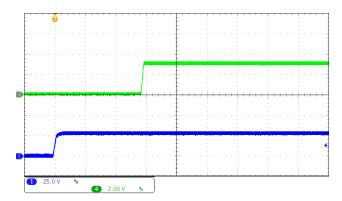

Main output voltage ripple (blue) (50 mV/div) $\;$ Time base: 2 μs /div

Figure D. Main output voltage ripple at nominal input voltage and full load current

Main output voltage (blue) (1 V/div) Output current (green) (10 A/div) Time base: 4 ms/div

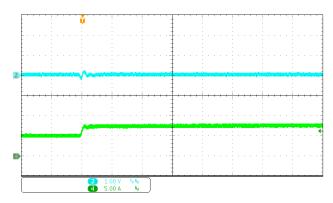
Figure E. Main output load current transient response: from 75% to 50% (di/dt = $1A/\mu s$)



Main output voltage (blue) (2 V/div) Input voltage (navy blue) (25 V/div) Time base: 4 ms/div

Figure F. Input voltage transient response, main output voltage (AC coupled): input voltage from 36V to 18V (dV/dt = 50V/ms)

Page 4 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification



Aux output voltage (navy blue) (2 V/div) Input voltage (blue) (25 V/div)

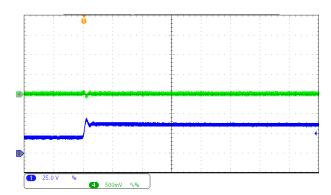
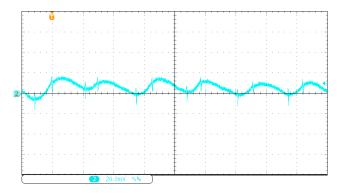

Time base: 40 ms/div

Figure G. Startup waveform of main output at full load

Aux output voltage (blue) (1 V/div) Output current (green) (5 A/div) Time base: 40 $\mu s/div$

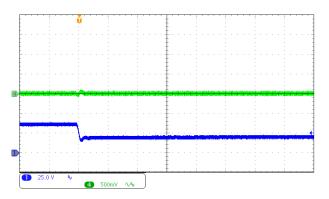

Figure H. Main output load current transient response: from 50% to 75% (di/dt = 1A/ μ s)

Aux output voltage (blue) (500 mV/div) Input voltage (navy blue) (25 V/div)

Time base: 4 ms/div

Figure I. Input voltage transient response, main output voltage (AC coupled): input voltage from 18V to 28V (dV/dt = 50V/ms)

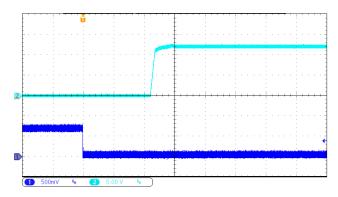
Aux output voltage ripple (blue) (20 mV/div)


Time base: 2 μs /div

 $\label{eq:Figure J.} \textbf{Figure J.} \ \ \textbf{Main output voltage ripple at nominal input voltage and full load current}$

Aux output voltage (blue) (1 V/div) Output current (green) (5 A/div) Time base: $40 \,\mu s/div$

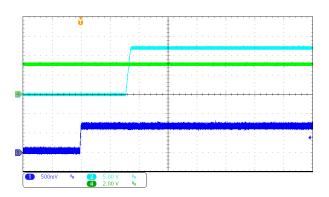
Figure K. Main output load current transient response: from 75% to 75% (di/dt = $1A/\mu s$)


Aux output voltage (blue) (500 mV/div) Input voltage (navy blue) (25 V/div)

Time base: 4 ms/div

Figure L. Input voltage transient response, main output voltage (AC coupled): input voltage from 28V to 18V (dV/dt = 50V/ms)

Page 5 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification



Main output voltage (blue) (5 V/div) ENABLE* (navy blue) (500 mV/div)

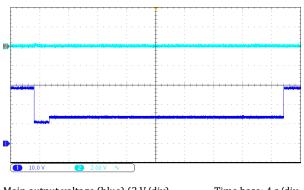

Time base: 10 ms/div

Figure M. ENABLE* signal asserted low

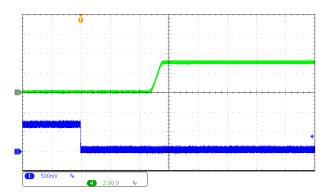
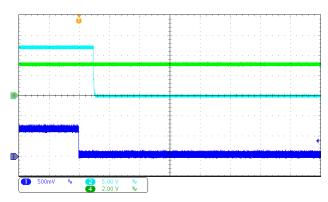

Main output voltage (blue) (5 V/div) Aux output voltage (green) (2 V/div) INHIBIT* signal (navy blue) (500 mV/div) Time base: 10 ms/div

Figure N. INHIBIT* asserted float

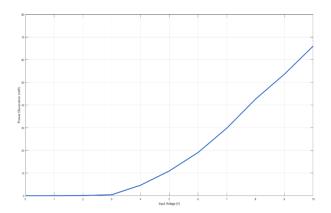
Main output voltage (blue) (2 V/div) Input voltage (navy blue) (10 V/div) Time base: 4 s/div


Figure O. Starting Operation Test MIL-STD-1275

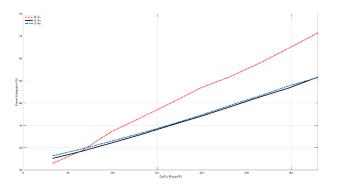
Aux output voltage (green) (2 V/div) ENABLE* (navy blue) (500 mV/div)

Time base: 10 ms /div

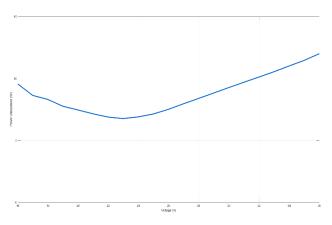
Figure P. ENABLE* signal asserted low

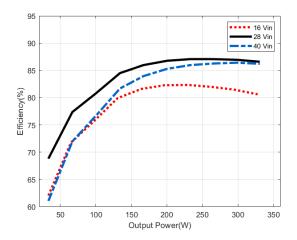


Main output voltage (blue) (5 V/div) Aux output voltage (green) (2 V/div) INHIBIT* signal (navy blue) (500 mV/div) Time base: 10 ms/div


Figure Q. INHIBIT* asserted low

Page 6 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification




 $\textbf{Figure R.} \ \ \textbf{Disabled power dissipation versus input voltage, ENABLE*} \\ asserted \ \ \textbf{and INHIBT*} \ \ \textbf{de-asserted}$

 $\label{lem:figure S.} \textbf{Power dissipation versus output power at minimum, nominal, and maximum input voltage}$

 $\label{eq:Figure T.} \textbf{Enabled power dissipation versus input voltage, ENABLE* asserted and INHIBT* de-asserted$

 $\boldsymbol{Figure}\;\boldsymbol{U}.\;$ Efficiency versus output power at minimum, nominal, and maximum input voltage

Page 7 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Block Diagram for KRPS02-DC28WE-P300-DC12-VX3U

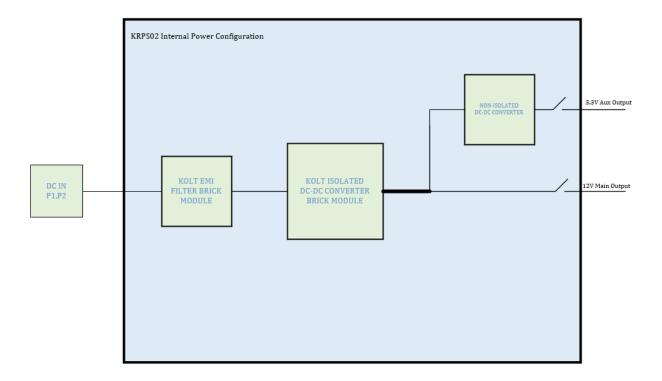


Figure V. Internal Block Diagram Representation of KRPS02

Page 8 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

IPMI Interface

Four constants are used to calculate a real-world value from the single byte variable returned in the response. The conversions can be realized with the following equation:

$$y = (Mx + (B * 10^{K1})) * 10^{K2}$$

Where;

y =the converter reading

 \mathbf{x} = the raw sensor reading

M = the signed integer multiplier

 ${f B}$ = the signed additive offset

K1 = signed exponent for constant B (sets decimal point for B)

K2 = signed result exponent (sets decimal point for y)

Sensor Number	Hex	Sensor Name	SI Units	M	В	K1	К2
7	0x07	Input Voltage	V	30	90	1	-2
8	0x08	Main Output Voltage	V	20	90	2	-3
11	0x0B	Aux Output Voltage	V	10	20	2	-3
18	0x12	Temperature P6	°K	1	20	1	0
19	0x13	Temperature P1	°K	1	20	1	0
25	0x19	Aux Output Current	A	10	0	0	-2

Page 9 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Protection Features

Input Under Voltage Lockout

The VPX module starts operating when the input voltage is raised above the "Under Voltage Turn-On Threshold." Once turned on, turn off is initiated when the input falls below the "Under Voltage Turn-Off Threshold." The "Module Input Specifications" Table gives the associated limits.

Input Over Voltage Protection

The VPX module protects itself by ceasing operation when the input goes above the "Over Voltage Turn-Off Threshold." It resumes operation when the input falls below the "Over Voltage Turn-On Threshold." The associated limits are given in the "Module Input Specifications" Table.

Output Current Limit

The VPX module will derate the output voltage if the output current exceeds the "Output Current Limit" value. If the fault condition is resolved, the control output voltage will increase to the nominal value.

Output Over Voltage Protection

If the output voltage exceeds the "Output Over Voltage-Protection" value the VPX module outputs are disabled immediately and retries after cooldown period. The "Output Over Voltage Protection Limit" is 120% of Output Voltage.

Output Over Current Protection

If the output current exceeds the "Output Current Shutdown Limit" value the VPX module outputs are disabled immediately and retries after cooldown period.

Short Circuit Protection

The short circuit condition is an extreme case of the Output Current Limit condition. When output voltage drops below "Output DC Current-Limit Shutdown Voltage" limit, the VPX module outputs are disabled immediately and retries after cooldown period. The "Output DC Current-Limit Shutdown Voltage" is 50% of Output Voltage.

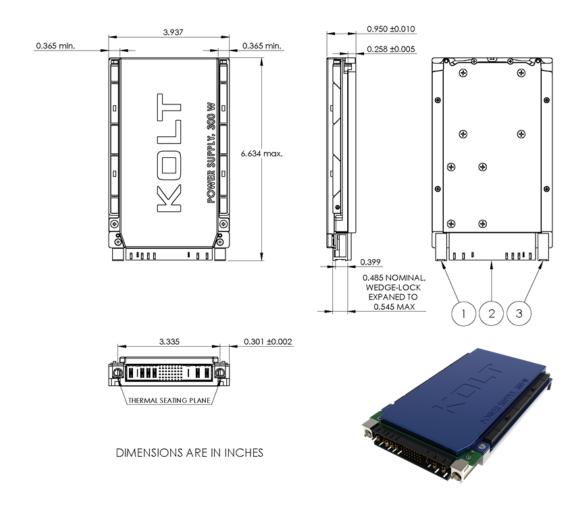
Over Temperature Shutdown

The brick has a thermistor located at the hottest point inside the module. The thermal shutdown circuit is designed to turn the VPX module off when the temperature at the sensed location goes above the "Over Temperature Shutdown" limit. It locks itself and waits to cool off. The VPX module then resumes operation automatically when the temperature of the sensed location falls below the trip point by the amount equal to the "Over Temperature Shutdown Hysteresis."

Page 10 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Mechanical Drawing

Connector Pin Configuration


ROWS	D/	OWE	В				SIG	NAL				POWER			Ъ	
ROWS	P	JVVE	.Γ.	1	2	3	4	5	6	7	8		POWER			
D																
С	P1	Da	LP1									P3	D4	DE	LP2	De
В	М	PZ	LPI									P3	P4	P5	LPZ	P0
Α																

Pin	Function/Name	Description
P1	-DC_IN	V _{in} -
P2	+DC_IN	V _{in+}
LP1	CHASSIS	-
A1	NC (SYNC_OUT)	-
B1	NC (NVMRO)	-
C1	GA2*	Address Bit 2
D1	NC	-
A2	NC (VBAT)	-
B2	FAIL*	When any of the output is not within specification, FAIL* signal will be driven low to indicate a failure
C2	INHIBIT*	Input control signal defined in VITA 62, referenced to SIGNAL RETURN
D2	ENABLE*	Input control signal defined in VITA 62, referenced to SIGNAL RETURN.
A3	NC (SYNC_IN)	-
В3	NC	JTAG VDD
C3	NC (NED)	-
D3	NC (NED_RETURN)	-
A4	NC	JTAG TDO
B4	NC	JTAG TCK
C4	NC	JTAG TDI
D4	NC	JTAG TMS
A5	GA0*	Address Bit 0
B5	GA1*	Address Bit 1
C5	SM0 (IPMB-A SCL)	Primary I ² C clock
D5	SM1 (IPMB-A SDA)	Primary I ² C data
A6	SM2 (IPMB-B SCL)	Redundant I ² C clock
В6	SM3 (IPMB-B SDA)	Redundant I ² C data
C6	NC	-
D6	SYSRESET*	System reset is actively low. It will be high impedance when all outputs are within voltage specification. It will be pulled low if any failure has occurred or if the outputs are disabled by the user during operation.
A7	NC (+12VDC SHARE)	
B7	NC (3.3V_AUX SHARE)	-
C7	NC (+12VDC SHARE)	
D7	SIGNAL RETURN	Ground pin for control and communication signals; internally Kelvin-connected to POWER RETURN
A8	+12VDC SENSE	Main output sense, should be connected at point-of-load
B8	3.3V_AUX SENSE	Aux output sense, should be connected at point-of-load
C8	+12VDC SENSE	Main output sense, should be connected at point-of-load
D8	SENSE RETURN	Aux output sense, should be connected at point-of-load
Р3	+12VDC	+12V main output
P4	POWER RETURN	Common output voltage return pin
P5	POWER RETURN	
LP2	3.3V_AUX	+3.3V auxiliary output
P6	+12VDC	+12V main output

Page 11 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Mechanical Dimensions

Item	Desciption	Manufacturer Part Number	Manufacturer
1	VITA 46 0 Deg Guide Socket	1-1469492-1	
2	VITA 62 Connector Plug	6450849-7	TE Connectivity
3	VITA 46 0 Deg Guide Socket	1-1469492-1	

Page 12 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification

Part Ordering Information

Family	Input Voltage	Power	Output Voltage	Package	Option Field
KRPS02	DC28WE	P300	DC12	VX3U	_
	28 VDC	300 W	12 VDC	3U VPX	

Page 13 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification



Revision History

Document Number	Revision	Date	Description	Page Number(s)
110267	01	02.04.2025	Initial Release	-
110267	02	16.05.2025	Second Release Electrical characteristics updated Main and aux output measurements added Efficiency measurements added Internal block diagram added	All Pages

Contact Us

KOLT Türkiye	KOLT Europe
salesturkiye@koltpower.com	saleseurope@koltpower.com
KOLT Muhendislik A.S.	KOLT Power Ltd.
Serhat Mah. 1148. Sok. No:1B/1 Yenimahalle, Ankara 06374	Fareham Innovation Centre Merlin House, 4 Meteor way, Daedalus Drive, Fareham, Lee-On-Solent PO13 9FU
Türkiye	United Kingdom
www.kolt.com.tr	www.koltpower.com

The information provided in this datasheet is believed to be accurate and reliable. However, KOLT assumes no responsibility for any consequences arising from its use, nor for any infringement of patents or other rights of third parties that may result from its use. These products are sold only under KOLT's general terms and conditions of sale, unless otherwise specified in writing. Specifications are subject to change without notice. All rights reserved.

Page 14 of 14 www.koltpower.com Doc: 110469 Rev: 02 Status: In Qualification