

Features & Benefits

- Isolated DC/DC Rugged Module
- EMI filter module is included
- Communication capability
- 91.3% Efficiency at Full Load
- Input UV/OV Lockout
- Input phase reversal protection
- Output OV/OC/SC Protection
- Thermal Shutdown
- Remote ON/OFF Control
- Output Voltage Remote Sense
- Output Voltage Trim Range +10%*, -40%

Compliance

Converter is designed to meet:

- MIL-STD-461G
- MIL-STD-810G
- MIL-STD-1275E

Typical Applications

- Military/Defense Power Systems
- Armored Vehicles
- Land Platforms
- Aerospace Platforms
- Communications and Radar Systems

Product Ratings					
V _{IN}	16-40 V _{DC}				
V _{IN_NOM}	28 V _{DC}				
V _{OUT}	28 V _{DC}				
I _{OUT_MAX}	10.7 A _{DC}				
P _{OUT_MAX}	300 W				

Product Description

KMRM01-DC28-P300-DC28-CM is a 300 W DC/DC converter in rugged module that operates from nominal 28 V input and generates 28 V isolated output. It is designed to meet MIL-STD-461G EMI requirements with the built-in KRFL01 EMI filter module and has superior noise and ripple performance. Converter is fully protected to operate reliably under all kinds of disturbances. Casing is creatively designed to provide efficient cooling to facilitate reliable operation up to 100 °C base plate temperature.

Size: 100 x 80 x 23.4 mm [3.94" x 3.15" x 0.92"]

Weight: 340 g

^{*:} Trim-up capability input voltage range $18\text{-}40V_{DC}$

Signals and Functions

+IN: Input supply voltage positive line.

-IN: Input supply voltage return line.

ON/OFF: Remote on/off pin. Referenced to **-IN** input return line. Should be pulled to input return line to turn the converter on. Can be left open to turn off the converter.

CHASSIS: Chassis connection for cabling purposes.

+OUT: Output voltage positive line.

-OUT: Output voltage return line.

+SNS: Remote sense positive line. Could be used to regulate output voltage at load terminals. Should be connected to positive side of Load. Using sense function with an ORing circuit may cause unstable output voltages. It is recommended to not connect this pin while using an ORing circuit.

-SNS: Remote sense negative line. Could be used to regulate output voltage at load terminals. Should be connected to negative side of Load. Using sense function with an ORing

circuit may cause unstable output voltages. It is recommended to not connect this pin while using an ORing circuit.

TRIM: Trim pin can be used to increase or decrease output voltage within specified limit via a resistor. Trim up and down equations are given in Basic Operation and Features section.

PMBUS_SDA*: I2C communication data line. Internally pulled up to 3.3 Vdc via 10 k Ω resistor. Can be left open if not used. Referenced to output return line(-0UT).

PMBUS_SCL*: I2C communication clock line. Internally pulled up to 3.3 Vdc via 10 k Ω resistor. Can be left open if not used. Referenced to output return line(-OUT).

PMBUS_ADDRESS*: I2C communication address selection line. Can left open or connected to Output return line to choose I2C address of converter between 0x81 and 0x83 respectively. Referenced to output return line(-OUT).

NC: DO NOT CONNECT. Connecting these pins to any other terminal may damage the converter.

All pins with identical function and name should be connected together for best results.

*: Available on PMBUS option.

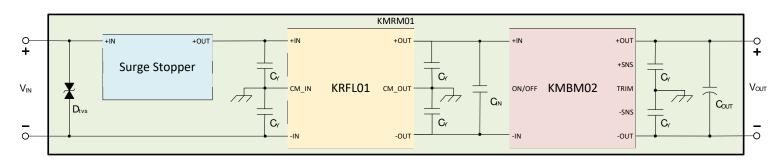


Figure A. KMRM01 internal block diagram

KRFL01: EMI Filter Module

KMBM02: Isolated DC/DC Converter Module

Cv: CHV1206N2K0472KXT (4700 pF 2kV X7R Ceramic Capacitor)
CIN: CL32Y106KCVZNWE (22 x 10uF 100V Ceramic Capacitor)

Cout: A759KS476M1KAAE045 (2 x 47uF 80V Aluminum-Polymer Capacitor))

DTVS: 5.0SMDJ100CA (3 x Bi-directional 100Vwm TVS Diode)

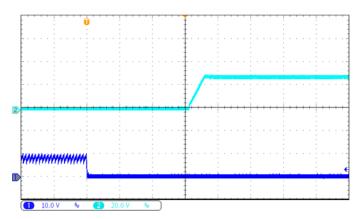
Electrical Characteristics

All data are obtained at nominal line and full load unless otherwise specified. (Ta = 25 °C)

Input Characteristics						
Parameters	Notes & Conditions	Min	Тур	Max	Unit	
Non-Operating Input Voltage Range	Continuous	-40		60	V	
Input Voltage Transient	50ms @ full load			50	V	
Operating Input Voltage Range		16	28	40	V	
Input Under Voltage Turn-On Threshold		15.5	16	16.5	V	
Input Under Voltage Turn-Off Threshold		14.5	15	15.5	V	
Input Over Voltage Turn-On Threshold		36	36.5	37	V	
Input Over Voltage Turn-Off Threshold		40	40.5	41	V	
No-Load Input Current			283	300	mA	
Disabled Input Current			9.5	12	mA	

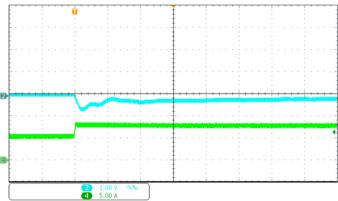
Output Characteristics					
Parameters	Notes & Conditions	Min	Тур	Max	Unit
Output Voltage			28		V
Output Voltage Set Point				± 1	%
Output Voltage Line Regulation				± 0.2	%
Output Voltage Load Regulation				± 0.2	%
Output Voltage Ripple and Noise	20 MHz bandwidth		350	400	mV _{PK-PK}
Operating Output Current Range		0		10.7	A
Output Current Limit				11	A
Output DC Current-Limit Shutdown Voltage			14		V
Output Power			300		W
Maximum Output Capacitance	Nominal output voltage			3	mF
Input Voltage Transient Response	50 V/ms; See Figure D				
Step Change	28V to 40V to 28V input voltage		0.5	1	V
Settling Time	Within 1% output voltage		2		ms
Load Current Transient Response	1 A/μs; See Error! Reference source not found. Figure F and Figure C				
Step Change	50% to 75% to 50% output load		0.8	1	V
Settling Time	Within 1% output voltage		1		ms
Output Voltage Trim Range	Across Sense+ and Sense- Pins	-40		+10	%
Output Over-Voltage Protection				33.6	V

General Characteristics							
Parameters	Notes & Conditions	Min	Тур	Max	Unit		
Efficiency	From half load to full load	91			%		
Turn-On Transient Time	Within 90% output voltage		35		ms		
Turn-On Transient Output Voltage Overshoot	Maximum output capacitance		1		%		
Soft-Start Time	Within 90% output voltage		5		ms		
Switching Frequency			150		kHz		
Non-Operating ON/OFF Pin Voltage	Continuous	-1		60	V		
ON/OFF Control On-State Voltage		-1		10	V		
ON/OFF Control Off-State Voltage		16		40	V		
MTBF	Ground Fixed, 40°C Ta		308		10³ Hrs.		
Over Temperature Shutdown Trip Point			115		°C		
Over Temperature Shutdown Hysteresis			15		°C		


Isolation Characteristics							
Parameters Notes & Conditions Min Typ Max U							
Insulation Resistance	500V _{DC}						
Input to Base Plate			>45		GΩ		
Output to Base Plate			>45		GΩ		
Isolation Voltage	60s dwell, 1mA trip current						
Input to Output			2250		V_{DC}		
Input to Base Plate			2250		V_{DC}		
Output to Base Plate			2250		V_{DC}		

	Environmental Characteristics						
Parameters	Standard	Min	Тур	Max	Un	it	Status
Operational Baseplate Temperature	MIL-STD-810G_CHG-1 Method 501.6/502.6 Procedure II	-40	-	+100	°(]	Passed*
Storage / Transport Temperature	MIL-STD-810G_CHG-1 Method 501.6/502.6 Procedure I	-55	-	+125	°(2	Passed*
Operational Low Pressure	MIL-STD-810G_CHG-1 Method 500.6 Procedure II	-	-	3000	m	l	Passed*
Storage / Transport Low Pressure	MIL-STD-810G_CHG-1 Method 500.6 Procedure I	-	-	9000	m	l	Designed to Meet
Parameters	Standard	Waveform	Peak Value	Pulse Duration	Ax	is	Status
Shock	MIL-STD-810G_CHG-1 Method 516.7 Procedure I	Half-Sine	10g	11 ms	±X, ±	Υ, ±Z	Passed*
Parameters	Standard	Category	Figure	Platform	Vehi	icle	Status
	MH CTD 040C CHC 4	Category 4	514.7C-2	Secured Cargo	Tru Transpo and Con Wheeled	rtation nposite	Passed*
Vibration	MIL-STD-810G_CHG-1 Method 514.7	Category 8	514.7C-8	Aircraft	Prope	eller	Passed*
	Procedure I	Category 11	514.7C-11	Railroad	Tra	in	Passed*
		Category 20	514.7C-4	Ground	Wheeled	Vehicles	Passed*
		Category 21	514.7D-9	Watercraft	Marine V	ehicles	Passed*
Parameters	Standard		Со	ndition	'		Status
Salt Fog	MIL-STD-810G_CHG-1 Method 509.6	24 ho	ours spray, 24 h	ours dry, app	lied 2 times		Designed to Meet
Sand and Dust	MIL-STD-810G_CHG-1 Method 510.6 Procedure I/II) μm Dust 50 μm Sand			Designed to Meet
Fungus	MIL-STD-810G_CHG-1 Method 508.7	Analysis of	the degree of in com	ertness to fur ponents.	igus growth	of the	Analysis
Solar Radiation	MIL-STD-810G_CHG-1 Method 505.6 Procedure I	A2 Passed*					Passed*
Humidity	MIL-STD-810G_CHG-1 Method 507.6 Procedure II	≥ %95 Relative @30°C Passed*					Passed*
Parameters	Standard			Test			Status
EMI/EMC	MIL-STD-461G Ground Army	CE102	CS10 CS11 CS11 CS11 CS11	.4 .5 .6	RE102	RS103	Passed*

^{*} Verified in a multi-channel power supply.



Output voltage (light blue) (20 V/div) ON/OFF pin voltage (blue) (10 V/div)

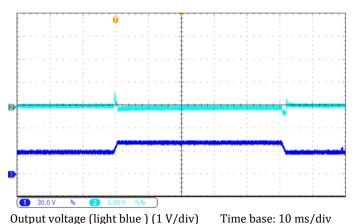

Time base: 10 ms/div

Figure B. Startup waveform, input voltage pre-applied with 1 μF ceramic capacitor across the load terminals

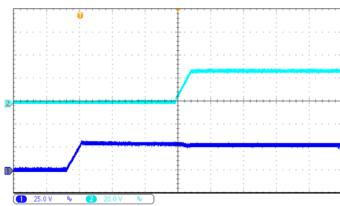

Output voltage (light blue) (1 V/div) Time base: 200 μ s/div Output current (green) (5 A/div)

Figure C. Load current transient response (AC Coupled): from 50% to 75% with 1 μ F ceramic capacitor across the load terminals (di/dt = 1 A/ μ s)

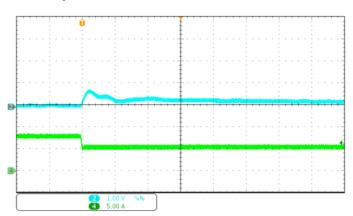

Input voltage (blue) (30 V/div)

Figure D. Input voltage transient response (AC Coupled): from 28 V to 40 V and 40 V to 28 V with 1 μ F ceramic capacitors across the load terminals. (dV/dt = 50 V/ms)

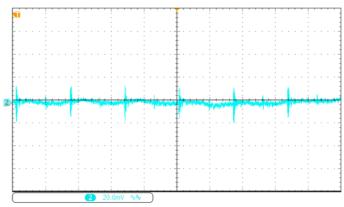

Output voltage (light blue) (10 V/div) Input voltage (blue) (25 V/div) Time base: 10 ms/div

Figure E. Turn on transient at full resistive load with 1 μF ceramic capacitor across the load terminals

Output voltage (light blue) (1 V/div) Output current (green) (5 A/div) Time base: 200 μs/div

Figure F. Load current transient response (AC Coupled): from 75% to %50 with 1 μ F capacitor across the load terminals. (di/dt = 1 A/ μ s)

Output voltage ripple (200 mV/div)

Time base: 2 µs/div

Figure G. Output voltage ripple at nominal input voltage and full load current with 1 μ F ceramic capacitor across the load terminals (Bandwidth: 20 MHz)

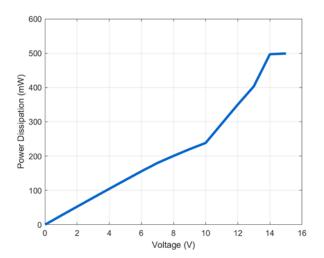
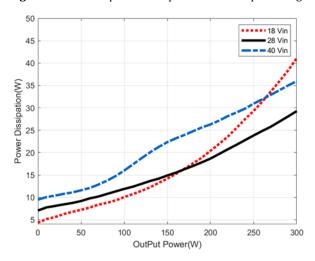
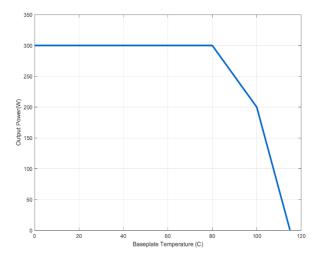




Figure H. Disabled power dissipation versus input voltage

Figure I. Power dissipation versus output power at minimum, nominal and maximum input voltage at nominal output voltage

Figure J. Thermal Derating (maximum output power vs baseplate temperature) at nominal input voltage

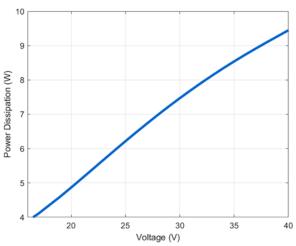
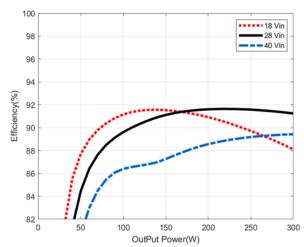
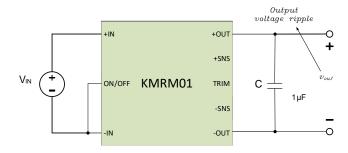




Figure K. Enabled power dissipation versus input voltage

Figure L. Efficiency versus output power at minimum, nominal and maximum input voltage at nominal output voltage

Figure M. Test set-up showing measurement point for output voltage ripple (**Figure G**).

Basic Operation and Features

REMOTE ON/OFF

The ON/OFF input, Pin 23, allows the user to control the ON and OFF states of the module. This input, which is referenced to the return terminal of the input bus (-IN), is hold as active low to keep the module at ON state. If it is pulled down to the return terminal of the input bus (-IN), converter goes into ON state. Moreover, the ON/OFF function allows the product to be turned on/off by an external device like a semiconductor or a mechanical switch.

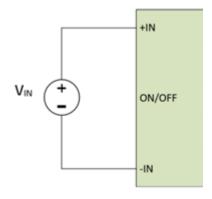


Figure N. Recommended OFF State Connection

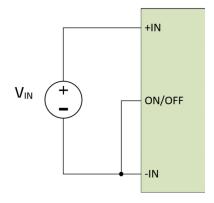


Figure O. Recommended ON State Connection

SENSE

Sense terminals are placed at the load side of the converter module. The sense inputs are used to adjust and fine tune the output voltage and compensate for any error at the voltage level. If the load is away from the unit, which may require connection over a long pair of cable, connect +SNS and -SNS to the terminal of the load respectively to compensate for the voltage drop across the line.

OUTPUT VOLTAGE TRIM

TRIM input feature of the module permits the user to adjust the output voltage across the sense leads up or down according to the trim range. To decrease the output voltage, the user should connect a resistor between TRIM and +SNS input.

For a desired decrease of the nominal output voltage, the value of the resistor should be calculated as below.

$$R_{TRIM_DOWN} \ = 9.18 * \frac{\left(V_{OUT_{nom}} - V_{OUT_{desired}} * 1.99\,\right)}{\left(V_{OUT_{desired}} - V_{OUT_{nom}}\right)} \ k\Omega$$

Output Voltage resulting from trim down resistor can be calculated as below. R_{TRIM_DOWN} is trim down resistor's value in $k\Omega.$

$$V_{Generated} = V_{OUT_{nom}} * \frac{\left(9.18 + R_{TRIM_DOWN}\right)}{\left(R_{TRIM_DOWN} + 18.27\right)} \ V$$

To increase the output voltage, the user should connect a resistor between TRIM and -SNS input. For input voltages below 18 V at full-load, converter is not able to regulate output voltage above 28 V. So, for lower than 18 V input voltages, trimup capability is limited.

Converter is able to regulate output voltage to 28 V at full load, starting from 16 V input voltage.

For a desired increase of the nominal output voltage, the value of the resistor should be calculated as below.

$$R_{TRIM_UP} = \frac{\left(9.18 * V_{OUT_{nom}} - V_{OUT_{desired}} * 8.25\right)}{\left(V_{OUT_{desired}} - V_{OUT_{nom}}\right)} \; k\Omega$$

Output Voltage resulting from trim up resistor can be calculated as below. R_{TRIM_UP} is trim up resistor's value in $k\Omega$.

$$V_{Generated} = V_{OUT_{nom}} * \frac{(9.18 + R_{TRIM_UP})}{(R_{TRIM_UP} + 8.25)} V$$

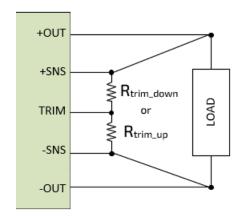


Figure P. Typical Trim Application Circuit

DROOP CURRENT SHARING

For "droop active" models (part numbers with PR option), output voltage has a 1 V slope from full load to no load. In other words, output voltage of the module is 28.5 V for no load and 27.5 V for full load. This enables safe parallel connection of multiple models.

For connection diagram, please refer to Figure T. Recommended Application N+1 Redundant Parallel Connection Figure T. ORing diodes (simple diode or ideal diode) are required for parallel connection.

PMBUS

This module offers a PMBUS digital interface that enables the user to monitor input voltage, output voltage, output current, and device temperature. The PMBUS interface uses the two-wire I2C standard during communication.

Please refer to 105847 KMBM02 I2C Communication Manual for detailed information on PMBUS capability.

Protection Features

Reverse Input Protection

Converter module stays unharmed even if it is subjected to reverse input voltages. The associated limits are given in "Module Input Specifications" Table.

Input Over Voltage Protection

Converter module protects itself by ceasing operation when input goes above "Over Voltage Turn-Off Threshold". It resumes operation when input falls below "Over Voltage Turn-On Threshold". The associated limits are given in "Module Input Specifications" Table.

Output Current Limit

If the output current exceeds the "Output Current Limit" value, the converter will immediately stop operating. The control waits for 500 ms and resets the fault status automatically and resumes operation with soft start. If the fault condition is still persisting, its shuts off again. This sequence is repeated indefinitely.

Output Over Voltage Protection

The default output OVP limit is set to 20% above the nominal output voltage. When detected, protection control responds immediately by shutting down the converter and disabling the outputs. Start sequence is similar to the output current limit case.

Short Circuit Protection

The short circuit condition is an extreme case of the Output Current Limit condition. When the fast rise of the current during a short circuit condition is detected by the dedicated controller, the outputs of the converter are disabled immediately. The sequence of operation after a short circuit detection is similar to hiccup concept described in "Output Current Limit" section.

Over Temperature Shutdown

The brick has a thermistor located at the hottest point inside the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location goes above the "Over Temperature Shutdown" limit. It locks itself and waits to cool off. Converter then resumes operation automatically when the temperature of the sensed location falls below the trip point by the amount equal to the "Over Temperature Shutdown Hysteresis"

MIL-STD-461E CE102 Test Results

Following EMI measurements have been performed in KOLT's EMI test laboratory using Rohde&Schwarz FPC1000 Spectrum Analyzer. KMRM01 loaded to supply 300 W to a resistive load at nominal input and output voltage. No external EMI filter is needed.

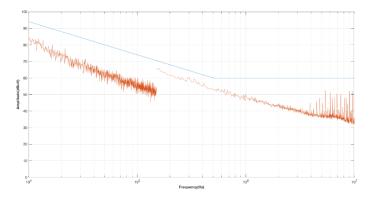


Figure Q. MIL-STD-461G CE102 Positive Line

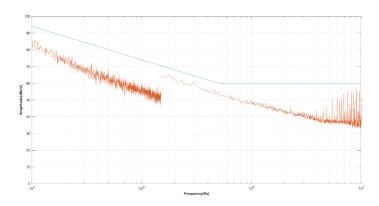


Figure R.MIL-STD-461E CE102 Negative Line

Application Considerations

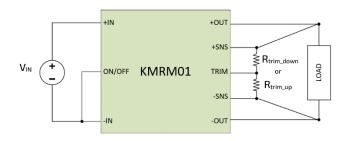
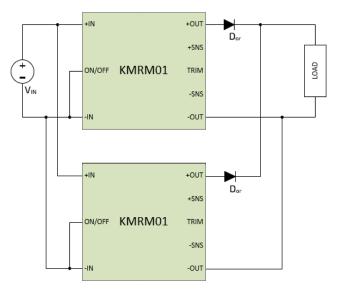
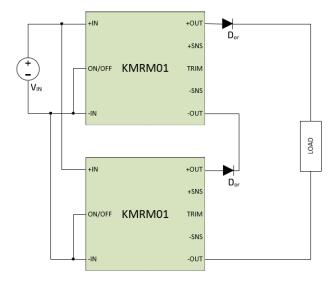
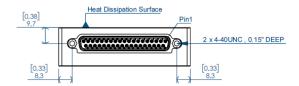
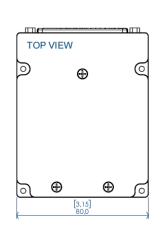
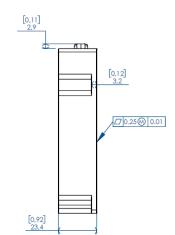



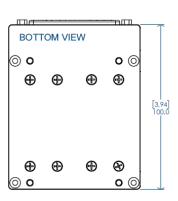
Figure S. Typical Application

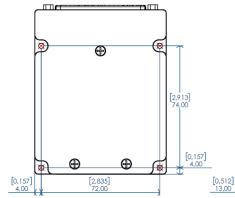
Figure T. Recommended Application N+1 Redundant Parallel Connection

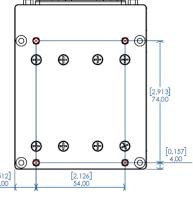




Figure U. Recommended Application Series Connection


 $D_{\text{OR}}\!\!:$ Can be either an ORing diode or ideal diode driver circuit




Mechanical Drawing



For mounting application 1 4 x Ø3.16mm Through Hole

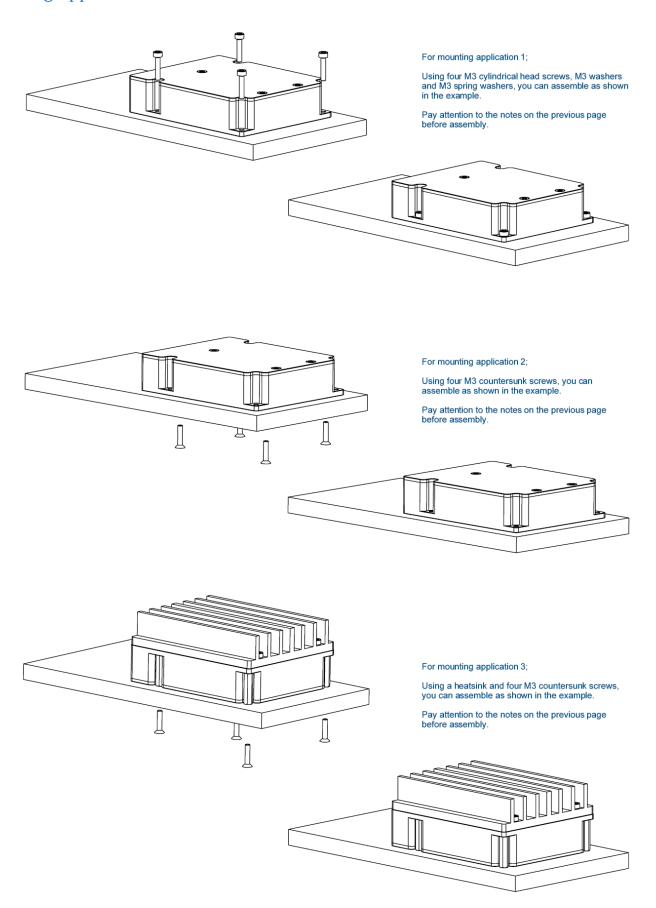
For mounting application 3 4 x M3 Threaded Hole (5mm deep)

For mounting application 2 $4\,x\,M3\,Helicoil$ $M3\,screw\,should\,not\,exceed\,3mm\,(0.118")$ depth below the surface of the thermal interface

Heat Dissipation Surface

Apply 0.077mm (0.003") thick Arctic Alumina or equivalent thermal compound to the area indicated by the heat dissipation surface before mounting.

NOTES:


- APPLIED TORQUE PER M3 SCREW
 1.5Nm (13in-lb) RECOMMENDED
 [1.6Nm (14in-lb) LIMIT].
- RECOMMENDED COOLING
 METHOD: CONDUCTION COOLED.
- THERMAL INTERFACE FLATNESS TOLERANCE IS 0.25mm (0.01") TIR FOR SURFACE.
- CONNECTOR MPN: 164A17969X
- MATE MPN: 163A11099X or EO.
- BACKSHELL: 165X02719X or EQ.
- CASE MATERIAL: AL6061-T6
- FINISH: MIL-C-5541 / Type II, Class 1A
- WEIGHT: 340g (12oz)
- ALL DIMENSIONS IN MILIMETERS [inches]
- TOLERANCES:
 X.Xmm ±0.5mm (X.XXIN ±0.020)
 X.XXmm ±0.25mm (X.XXXIN ±0.010)

Pin	Name	Function
4	CHASSIS	Earth
1, 3, 21	+IN	Positive input voltage
23	ON/OFF	Remote on/off, referenced to -IN
2, 20, 22	-IN	Input return
11, 13, 15, 17, 29, 30, 32, 34, 36	-OUT	Output return
27	-SNS	Negative remote sense
8	TRIM	Output voltage trim
26	+SNS	Positive remote sense
12, 14, 16, 18, 19, 31, 33, 35, 37	+OUT	Positive output voltage
25*	PMBUS_SDA	I2C Data
24*	PMBUS_SCL	I2C Clock
5*	PMBUS_ADDRESS	I2C Address selection
6, 7, 9, 10, 28	NC	DO NOT CONNECT

^{*:} AVAILABLE ON PMBUS OPTION (ALL REFERENCED TO -OUT)

Mounting Applications

Part Ordering Information

Family	Input Voltage	Power	Output Voltage	Package	Option Field
KMRM01	DC28	P300	DC28	СМ	PM: PMBUS
KMKMU1	28 VDC	300 W	28 VDC	Custom Module	PR: Droop Active

Ordering Number	Communication	Droop
KMRM01-DC28-P300-DC28-CM	No communication capability	Passive
KMRM01-DC28-P300-DC28-CM-PR	No communication capability	Active
KMRM01-DC28-P300-DC28-CM-PM	With PMBUS communication capability	Passive
KMRM01-DC28-P300-DC28-CM-PM-PR	With PMBUS communication capability	Active

Revision History

Revision	Date	Description	Page Number(s)
A-PC1	17.03.2023	Initial Release	-
A-PC2	04.10.2023	-	All
A-PC3	08.11.2023	-	All

Contact

KOLT Mühendislik A.Ş.

 Phone:
 +90 312 354 47 06

 E-Mail:
 KSG@kolt.com.tr

 Web:
 www.kolt.com.tr

Address: Ostim OSB Mah. 1148. Sok. No:32/B1 – 06374

Yenimahalle / Ankara / TÜRKİYE